Page 32 - MaSzeSz hírcsatorna 2018/1.
P. 32
A. Denvir, D. Pletcher (1996): Electrochemical generation of ferrate antibacterial activity changes, and transformation products, Environ. Sci.
part I: dissolution of an iron wool bed anode, J. Appl. Electrochem. 26 Technol. 48 10380–10389.
815–822. S. Licht (2001): Online Electrochemical Fe(VI) Water Purification, Israel
A. Denvir, D. Pletcher (1996): Electrochemical generation of ferrate part Patent Application.
II: influence of anode composition, J. Appl. Electrochem. 26 823–827. Z. Macova, K. Bouzek, J. Hives, V.K. Sharma, R.J. Terryn, J.C. Baum
P. Dobosy, É.Cs. Vizsolyi, I. Varga, J. Varga, Gy. Láng, Gy. Záray (2016): (2009): Research progress in the electrochemical synthesis of ferrate(VI),
Trichloroethylene removal from water by ferrate treatment, Microchem. Electrochim. Acta 54 2673–2678.
J. 127 74–78. MSZ ISO 6060:1991
P. Dobosy, É.Cs. Vizsolyi, I. Varga, J. Varga, Gy. Láng, Gy. Zára (2016): J.H. Nam, B.H. Kwon, I.K. Kim (2016): Applications of electrochemical
Comparative study of ferrate and thermally activated persulfate treat- ferrate(VI) for degradation of trichloroethylene in the aqueous phase,
ments for removal of mono- and dichlorobenzenes from groundwater, Desalin. Water Treat. 57 5138–5145.
Microchem. J. in press 10.1016/j.microc. 2016.10.015. L. Nikolić-Bujanović, M. Čekerevac, M. Tomić, M. Zdravković (2016):
M. Feng, X.Wang, J. Chen, R. Qu, Y. Sui, L. Cizmas, Z.Wang, V.K. Sharma Ibuprofen removal from aqueous solution by in situ electrochemically
(2016): Degradation of fluoroquinolone antibiotics by ferrate(VI): effects generated ferrate(VI): proofof-principle, Water Sci. Technol. 73 389–395.
of water constituents and oxidized products, Water Res. 103 48–57. N. Noorhasan, B. Patel, V.K. Sharma (2010): Ferrate(VI) oxidation of gly-
C. Gonzalez-Merchan, T. Genty, B. Busiere, R. Potvin, M. Paquin, M. cine and glycylglycine: kinetics and products, Water Res. 44 927–935.
Benhammadi, C.M. Neculita (2016): Ferrates performance in thiocy- B.E. Norcross, W.C. Lewis, H. Gai, N.A. Noureldin, D.G. Lee (1997): The
anates and ammonia degradation in gold mine effluents, Miner. Eng. 95 oxidation of secondary alcohols by potassium tetraoxoferrate (VI), Can. J.
124–130. Chem. 75 129–139.
N. Graham, C. Jiang, Z.X. Li, J.Q. Jing, J. Ma (2004): The influence of pH C. Sáez, M.A. Rodrigo, P. Canizares (2008): Electrosynthesis of ferrates
on the degradation of phenol and chlorophenols by potassium ferrate, with diamond anodes, AIChE J 54 1600–1607.
Chemosphere 56 949–956. V.K. Sharma, M. Sohn, G.A.K. Anquandah, N. Nesnas (2012): Kinetics
M. Homolková, P. Hrabák, M. Kolář, M. Černík (2016): Degradability of of the oxidation of sucralose and related carbohydrates by ferrate(VI),
chlorophenols using ferrate(VI) in contaminated groundwater, Environ. Chemosphere 87 644–648.
Sci. Pollut. Res. 23 1408–1413. V.K. Sharma (2013): Ferrate(VI) and ferrate(V) oxidation of organic com-
J.Q. Jiang, C. Stanford, M. Alsheyab (2009): The online generation and pounds: kinetics and mechanism, Coord. Chem. Rev. 257 495–510.
application of ferrate(VI) for sewage treatment — a pilot scale trial, Sep. X. Sun, Q. Zhang, H. Liang, L. Ying, M. Xiangxu, V.K. Sharma (2015):
Purif. Technol. 68 227–231. Ferrate(VI) as a greener oxidant: electrochemical generation and
J.Q. Jiang, C. Stanford, A. Mollazeinal (2012): The application of ferrate treatment of phenol, J. Hazard. Mater. http://dx.doi.org/10.1016/j.jhaz-
for sewage treatment: pilot- to full-scale trials, Global NEST J. 14 93–99. mat.2015.12.020 (in press).
A. Karlesa, G.A. De Vera, M.C. Dodd, J. Park, M.P. Espino, Y. Lee Y. Wang, H. Liu, G. Liu, Y. Xie, S. Gao (2015): Oxidation of diclofenac by
(2014): Ferrate(VI) oxidation of β-lactam antibiotics: reaction kinetics, potassium ferrate(VI): reaction kinetics and toxicity evaluation, Sci. Total
Environ. 506–507 252–258.
X. Yu, S. Licht (2008): Advances in electrochemical Fe(VI) synthesis and
analysis, J. Appl. Electrochem. 38 731–742.
32